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INTRODUCTION

OUR KNOWLEDGE

Modgl, Analyze, DeS|gr.1, Maintain, i "Under Uncertainty"
Monitor, Manage, Predict, :
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USE OF PROBABILISTIC METHODS
In Life-Cycle Analysis
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ation of System-Based Performance Measures and
tural Health Monitoring for
Under Uncertainty

OBJECTIVES

Investigate the system-based performance and its quantification with
advanced tools.

Develop an approach for using SHM data in updating the life-cycle
performance.

Develop approaches for the life-cycle structural maintenance.

Develop a detailed life-cycle management framework.



Outline:

*Updating the Performance with SHM Data
*Maintenance Optimization

Management Framework
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System-based performance prediction

Instantaneous system

System cumulative-time = » Safety (first failure)

failure probability Serviceabilit
. Vi 1Y

Lifetime functions

System redundancy
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LEVELS OF PERFROMANCE QUANTIFICATION

System Approach

Series System

Parallel System

Series-Parallel
System
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LEVELS OF PERFROMANCE QUANTIFICATION

Reliability of a system

| - Considering only ﬂexureI
I « Failure of slab |

I or failure of any two I
I adjacent girder |

l — System failure

S: Flexure of Slab

i: Flexure of Girder i
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LEVELS OF PERFROMANCE QUANTIFICATION

Alternative Approach to Model System Behavior
Finite Element Modeling

Deformation Scale Factor = 30

- 4 steel girders
- Composite with RC deck

Displacement

Load pattern causing
the deformation
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SYSTEM PERFORMANCE ASSESSMENT AND PREDICTION

Cumulative-time member failure probability

» Time-variant resistance of a structural member
R(t) = time-variant resistance,

[ R(t)=R,-9g (t)] R, = initial resistance,

g(t) = resistance degradation function

 Cumulative-time failure probability of "a member" subjected to two
statistically independent load processes with intensities S, and S,

@ 1—j0mjowexp[—ksltL {1-%]5 F[r-g (t)—sz]dt}j. fs (s,) fr, (r)ds,dr

Probablllty of member failure over a duration [0, t ] —» "Cumulative-time failure probability"

S1 = time-variant (live) load 32 = time-variant (dead) load

7‘3 F. = mean load occurrence rate and CDF of time-variant (live) load
1

= PDF of S, = PDF of R,

H Mori, Y., and Ellingwood, B.R. 1993. Reliability-based service life assessment of aging
concrete structures. J. Struct. Engrg., ASCE, 199(5).




SYSTEM PERFORMANCE ASSESSMENT AND PREDICTION

Cumulative-time member failure probability

* Cumulative-time failure probability of "a parallel system" of m components
subjected to the live load process with intensity S,

component component
1 2
\
t i
_[ 11— exp[ Aot 1— _[ F, -miny {max (ngF(d)Jrznj.rjﬂdt}]].fRO([)d[
i =1 .

\\ m-fold

J

\
Probability of the system failure over a duration [0, t ] » "Cumulative-time failure probability"

RSFi = resistance sharing factor of member | in the damage state (DS)

g = the sequence of | failed members (O <l< m)

Enright and Frangopol1998. Failure time prediction of deteriorating fail-safe structures. J. Struct.
Engrg., ASCE, 124(12).
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Lifetime functions

«Availability A(t)

A component is available at time t if it is functioning at time t.

y

AREA= A(t) = P(T> 1))

100

10

i
o
D
=
<
i
(@)
'_
2
H
=
(@]
a
[aly

102

»
»

103
TIME TO FAILURE, t
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THE unavailability of a component, An(t) = L = A0, IEthe probability that it has failed

béfore time t and thus it is unavailable (not functioninp) at time t.
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TIME, t (YEARS)




SYSTEM PERFORMANCE ASSESSMENT AND PREDICTION

System Redundancy

* Time-dependent redundancy indices (Okasha and Frangopol, Structural Safety , 2009)

- P t) = probability of first member failure occurrence at time t
PY(SYS) (t) I:)f(sys) (t) ysys(D) = P y

Rll(t):

Psys)(t) = probability of system failure occurrence at time t
Pf (sys) (t)

B,sys(t) = probability of first member failure occurrence at time t

Brsys(t) = probability of system failure occurrence at time t

An(t) = unavailability of the system at time t

An,.(t) = unavailability of the weakest component at time t




1-39 Northbound Bridge over the Wisconsin River




Okasha, N.M. and Frangopol, D.M. (2010). Advanced modeling for the life-cycle performance prediction and
UNIVERSI ’ service-life estimation of bridges. Journal of Computing in Civil Engineering, ASCE, (in press).
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Building the finite element model

service-life estimation of bridges. Journal of Computing in Civil Engineering, ASCE, (in press).

LEHI H Okasha, N.M. and Frangopol, D.M. (2010). Advanced modeling for the life-cycle performance prediction and
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Building the finite element model

Load second span with concentrated loads
simulating two side by side HS-20 trucks

Okasha, N.M. and Frangopol, D.M. (2010). Advanced modeling for the life-cycle performance prediction and
UNIVERSITY service-life estimation of bridges. Journal of Computing in Civil Engineering, ASCE, (in press).




Building the finite element model

Okasha, N.M. and Frangopol, D.M. (2010). Advanced modeling for the life-cycle performance prediction an
service-life estimation of bridges. Journal of Computing in Civil Engineering, ASCE, (in press).




Performance prediction

Input information for
bridge details

!

Collect data for the
truck passing rate of
occurrence A

]

Perform regression and Perform regression of
extrapolate /at t end the resistance statistics
| over time to obtain the

Start system performance analysis degradation function

L
Loop In time

do t =t start, t end. t increment

Use the Latin
hypercube sample of the
initial resistance to
agenerate the PDF of Rs

Determine corrosion
loss at this time

!

Build FE model for —————
. Use statistics of extremes
bridge system

] & NCHRP 368 to determine
load model at t end

Perform response surtace

with system FE model and y l :
resistance random variables “ompute the system cumulatives

time failure probability

Perform Latin hypercube Pertorm regression to generate
sampling with response the system litetime function
surface model and system

resistance random variables

Compute the statistics
of the generated Latin
hypercube sample
|

Okasha, N.M. and Frangopol, D.M. (2010). Advanced modeling for the life-cycle performance prediction
and service-life estimation of bridges. Journal of Computing in Civil Engineering, ASCE, Vol. 24, No.6.
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*Updating the Performance with SHM Data

*Maintenance Optimization

Management Framework




Combining SHM & LCM

Combining SHM and LCM has the benefit that each method’s
advantages complement the other’s disadvantages

Structural Health Monitoring Life-Cycle Management
Combined Approach

Predictive in naturg? Accuracy of random variables?
Actionable Information™ Limited use of structure-specific
structural data

Frangopol and Messervey "Maintenance Principles for Civil Structures,“ Chapter 89 in Encyclopedia of Structural Health
Monitoring, John Willey & Sons, 2009
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SHM design considerations: System Reliability

How a component functions in a system may give insight on
where to focus monitoring priorities during time.

Which element should receive monitoring priority for each system at any
point in time ?




_ TIME-DEPENDENT MONITORING PATHS

SYSTEM MODEL |
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Outline:

Civil Infrastructure (This Lecture)
*System-Based Performance Prediction

*Maintenance Optimization

Management Framework




_ROLE OF OPTIMIZATION

OPTIMUM SHM PLANS

« Continuous long-term monitoring of an entire structural system can
prevent unexpected failure through accurate assessment of its
structural performance.

» Cost-efficient placement of sensors and effective use of recorded
data are required by using probabilistic and statistical methods

* Optimal planning of SHM

— Bi-objective problem

4 )
maximization of availability of monitoring data

for prediction of structural performance

minimization of total monitoring cost




BALANCE OF COST AND AVAILABILITY OF SHM

A MONITORING

« Monitoring provides additional information about the state of a system at a point i
n time or over a period of time

« Monitoring data can be used for prediction of the state of a system in the future

Monitoring Duration Prediction
(1~ n days)

A AVAILABILITY OF MONITORING
DATA FOR PREDICTION

 Probability that the prediction mo
del based on monitoring data is u
sed in the future

PHYSICAL QUANTITY

Prediction model
based on n monitoring days

EHIGH

UNI VERSITY



COST EFFECTIVE MONITORING PLANNING

BI-OBJECTIVE PROBLEM (FORMULATION)

A OBJECTIVES

Expected average availability

of monitoring data for prediction Maximize

Cumulative total monitoring
cost for a given life

Minimize

A VARIABLES

- 7 (non-monitoring duration)
- 7,, (Monitoring duration)




MULTI-OBJECTIVE PROBLEM (APPLICATION)

A Monitoring of the 1-39 Northbound Bridge over the Wisconsin River
45

10 max. stress samples per day from CH 4

40 TOTAL SAMPLE SIZE = 800 SAMPLES

35
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Prediction model based on 80 monitoring days :
S(1)=26.438-0.0356-t

20.0 30.0 40.0 50.0 60.0 70.0
MONITORING TIME, t (DAYS)




_ROLE OF OPTIMIZATION

OPTIMUM SHM PLANS (Kim and Frangopol, Probabilistic Eng. Mech. 2010)

_ _ _ maximization of availability of monitoring data
Bi-objective problem m® for prediction of structural performance

minimization of total monitoring cost

E(A)=0.4
SUS T EUEEYE) r = 0.0%/day MONITORING DURATION, 7, | TOTAL COST
50 < 1,.< 3000 (days) PREDICTION DURATION, <
L Target life = 7,300 (days)
r=0.0 %/ day
C,=$10,000, z,, = 80 (days) $283,125

Case 02 ) T_T $155,625
Case 03

$108,750

TOTAL MONITORING COST (US $)

TIME (DAYS)




Movable Bridges (with UCF)

 Bridges which can move, rotate, or lift in order
to alternatively allow Intersecting traffic

— Bascule Bridges
— Vertical Lift Bridges
— Swing Bridges
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Basic Framework

Structural Networks
System - and Acquisition

Compoenent

Amelfiies) Mocels W o = ropiiy Indisss

Reliability




NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

Multi-objective life cycle probabilistic optimization with conflicting criteria
by means of Genetic Algorithms
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RESILIENCE OF BRIDGES IN TRANSPORTATION
NETWORKS

(with Dr. Paolo Bocchini)




An extreme event has What is the most efficient and
damaged a group of bridges economical plan to restore them ¢
Resilience is a
measure of the
promptness and
efficiency of the
restoration after

the occurrence of
an extreme event.
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Resilience is used
as objective of the
optimization

Optimal resilience- and cost-based post-disaster intervention
prioritization for bridges in a transportation network.




Lehigh Valley, PA
13 bridges
8 road segments

ik N Denver, CO
_—|__m4miles 14 b”dges
Denver, CO 6 road segments

Santa Barbara, CA

Santa Barbara, CA
38 bridges
14 road segments
Legend
O Nodes (indicated by letters)

€ Bridges (indicated by numbers)
— Road segments
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LATEST APPLICATION: SANTA BARBARA
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CONCLUSIONS

1. Effective and practical methods for capturing system performance
including redundancy and robustness in a time-dependent
context will continue to present an important challenge.

2. Development of prediction models for the structural performance
assessment and prediction with higher accuracy will improve the
results of any optimization process. Incorporation of SHM in this
process is a field in its infancy.

3. Improvements in probabilistic and physical models for evaluating
and comparing the risks and benefits associated with various
alternatives for maintaining or upgrading the reliability of existing
structures are needed.




Future challenges

Acquire reliable data and develop advanced
computational tools in order to:

PROVIDE BETTER KNOWLEDGE ON DEGRADATION AND
gEgFORg/IANCE OF CIVIL AND MARINE INFRASTRUCTURE
YSTEM

SUPPORT BETTER DESIGN METHODS AND
PERFORMANCE PREDICTIVE MODELS

SUPPORT ADVANCED MANAGEMENT DECISION-MAKING
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SEI-ASCE Technical Council on
Life-Cycle Performance, Safety,
Reliability and Risk of
Structural Systems

Founded 2008

hitp;/fcontent sel nstitute. org/committeesSt rucsaf ety html

TECHNICAL COUNCIL ON LIFE-CYCLE PERFORMANCE,
SAFETY, RELIABILITY AND RISK OF STRUCTURAL
SYSTEMS

(Created on October 1, 2008; replaces the former Technical
Administrative Committee on Structural Safety and Reliability)

Chair: pan Frangopol
Vice Chair: Bruce Ellingwood

Purpose:

To provide a forum for reviewing, developing, and promoting the principles and methods of
life-cycle performance, safety, reliability, and risk of structural systems in the analysis,
design, construction, assessment, inspection, maintenance, operation, monitoring, repair,
rehabilitation, and optimal management of civil infrastructure systems under uncertainty .

Task Group 1: Life-Cycle Performance of Structural Systems Under Uncertainty
Chair: Fabio Biondini

Purpose:
To promote the study, research, and applications of scientific principles of safety and

reliability in the assessment, prediction, and optimal management of life-cycle
performance of structural systems under uncertainty.

Task Group 2: Reliability-Based Structural System Performance Indicators
Chair: Michel Ghosn

Purpose:

To promote the study, research, and applications of reliability-based system
performance indicators including structural system reliability, robustness, and
redundancy.

Task Group 3: Risk Assessment of Structural Infrastructure Facilities and Risk-
Based Decision Making

Chair: Bruce Ellingwood
Purpose:

To promote the study, research and applications of scientific principles of risk
assessment and risk-based decision making in structural engineering .

When filling out application to join Technical Council, please indicate which Task Group.
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